منابع مشابه
Dishabituation of the Tritonia escape swim.
When repeatedly elicited, the oscillatory escape swim of the marine mollusc Tritonia diomedea undergoes habituation of the number of cycles per swim. Although similar in most respects to habituation observed in vertebrates and other invertebrates, one key feature, dishabituation, has been surprisingly difficult to demonstrate. Here we evaluate the hypothesis that this is due to interference fro...
متن کاملPrepulse inhibition of the Tritonia escape swim.
Presenting a weak stimulus just before a strong, startle stimulus reduces the amplitude of the ensuing startle response in humans and other vertebrates. This phenomenon, termed "prepulse inhibition" (PPI), appears to function to reduce distraction while processing sensory input. To date, no detailed neural mechanism has been described for PPI. Here we demonstrate PPI in the marine mollusk Trito...
متن کاملRemoval of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.
For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate ...
متن کاملIdentified serotonergic neurons in the Tritonia swim CPG activate both ionotropic and metabotropic receptors.
Although G-protein-coupled (metabotropic) receptors are known to modulate the production of motor patterns, evidence from the escape swim central pattern generator (CPG) of the nudibranch mollusk, Tritonia diomedea, suggests that they might also participate in the generation of the motor pattern itself. The dorsal swim interneurons (DSIs), identified serotonergic neurons intrinsic to the Triton...
متن کاملRole of membrane potential in calcium signaling during rhythmic bursting in tritonia swim interneurons.
Rhythmic bursting in neurons is accompanied by dynamic changes in intracellular Ca(2+) concentration. These Ca(2+) signals may be caused by membrane potential changes during bursting and/or by synaptic inputs. We determined that membrane potential is responsible for most, if not all, of the cytoplasmic Ca(2+) signal recorded during rhythmic bursting in two neurons of the escape swim central pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Learning & Memory
سال: 2000
ISSN: 1072-0502
DOI: 10.1101/lm.7.1.43